

INTERNATIONAL WIRE Group

> FLEXIBLE RUNDGEFLECHTE

Konzeption und Design

Die flexiblen Litzen der Produktpalette INTERNATIONAL WIRE werden aus Drähten mit Durchmessern von 0,1 mm, 0,15 mm, 0,20 mm oder 0,25 mm gefertigt.

Die Litzen sind als Rundlitze, Perlenlitze, quadratische Litze oder Flachlitze aus blankem, verzinntem oder versilbertem Kupferdraht lieferbar. Durch die Auswahl der Litze (Rund- oder Flachlitze) sowie des Drahtdurchmessers kann der beste technische Kompromiss für die jeweiligen Betriebsbedingungen der Litze bestimmt werden.

Diese technische Optimierung garantiert eine optimale Lebensdauer der Litzen und begrenzt so den mit der Wartung und dem Austausch verbundenen Zeit- und Kostenaufwand.

Anwendungen

In Anlagen, bei denen die elektrischen Verbindungen häufigen Bewegungen oder Handhabungen ausgesetzt sind.

In Anlagen, bei denen die dynamischen Eigenschaften und die Flexibilität der elektrischen Verbindungen eine wesentliche Voraussetzung für einen reibungslosen Betrieb darstellen.

Die Produktpalette

- Standardquerschnitte: 2 mm² bis 300 mm².
- Drahtdurchmesser: 0,10 bis 0,25 mm
- Oberflächenausführungen:
 - blankes Kupfer,
 - verzinntes Kupfer,
 - versilbertes Kupfer,
 - vernickeltes Kupfer (nur bei Drahtdurchmesser von 0,15 mm)

Optional

■ Kupfer der Qualität Oxygen Free – Cu-OF gemäß EN 13602 – garantierter Sauerstoffgehalt < 10 PPM (wie in der amerikanischen Norm ASTM B 170 empfohlen)

Vorteile

entwickeln.

INTERNATIONAL WIRE-Lösung:

Auf unseren industriellen Anlagen können wir sämtliche Litzen-Ausführungen herstellen und unseren Kunden deshalb optimale Lösungen anbieten – aus technischer wie aus wirtschaftlicher Sicht. Dank unserer Marktkenntnisse, unseres Know-hows und unseres Labors sind wir in der Lage, die richtige Litze für jeden Verwendungszweck zu

DRÄHTE				
Klassifizierung des Kupfers	gemäß NF EN 13602 (NFC 31 111)			
	Bezeichnung	Cu-ETP		
	Mindestgehalt Kupfer	99,9 %		
	Max. Reziprokwert der spezifischen elektrischen Leitfähigkeit bei 20°C (geglühter Zustand)	1,7241 μΩ.cm (100%l ACS)		
Eigenschaften des Kupfers	Mechanische Festigkeit	min. 200 MPa		
	Metallurgischer Zustand	Geglüht (Zustand 0)		
OBERFLÄCHENBEHANDLUNG DER DRÄH	TE CONTRACTOR OF THE CONTRACTO			
Elektrolytische Verzinnung	Nenndicke 0,1 µm gemäß EN 13602 (grade A gemäß	Nenndicke 0,1 µm gemäß EN 13602 (grade A gemäß NFC31 111)		
Elektrolytisches Versilbern	Nenndicke 1,02 µm gemäß ASTM B 298	Nenndicke 1,02 μm gemäß ASTM B 298		
Elektrolytische Vernickelung	Nenndicke 1.3 µm gemäß ASTM B 335	Nenndicke 1,3 µm gemäß ASTM B 335		

BEZEICHNUNG				
TR	50MM ²	D11	CRN	20
Rundlitze	Querschnitt (in mm²)	Außendurchmesser der Litze (in mm)	Blankes Kupfer (rot)	Drahtdurchmesser (in 1/100 mm)
			CRE Verzinntes Kupfer	

>FLEXIBLE RUNDGEFLECHTE

Zulässige Strombelastung in Abhängigkeit vom Querschnitt des Geflechts bei Umgebungstemperatur von 25°C, 35°C und 45°C

Die in der Tabelle angegebenen Werte entsprechen einem Betrieb mit einer einzigen Litze in einer temperaturstabilisierten Umgebung bei einer Maximaltemperatur der Litze von:

- 90°C bei Litzen aus blankem Kupfer unlegiertem Kupfer
- 105°C bei Litzen aus verzinntem Kupfer

Auswahlprinzip

Anhand der folgenden Tabellen kann die zulässige maximale Stromstärke (I max) für eine Litze mit einem gegebenen Querschnitt bei stabilisiertem Betrieb und einer Umgebungstemperatur (T Umg.) von 25°C, 35°C und 45°C bestimmt werden.

Die angegebenen Werte sind Richtwerte. Die Firma Tresse Métallique J.Forissier übernimmt keine Haftung für die Auswirkungen.

				Lineaver
Nennquerschnitt in mm²	Durchmesser in mm	Anzahl Drähte	Drahtdurch-messer in mm	Linearer Widerstand (Ohm/km)
2	2	08x14	0,15	8,62
2,5	2,3	08x18	0,15	6,90
3	3	08x22	0,15	5,75
4	3	08x28	0,15	4,31
5	3,8	08x36	0,15	3,45
6	4	08x43	0,15	2,87
6	4	08x24	0,2	2,87
8	4,5	08x57	0,15	2,15
10	5	08x71	0,15	1,72
10	5	12x27	0,2	1,72
16	6	12x75	0,15	1,07
16	6	12x43	0,2	1,07
20	6,5	12x95	0,15	0,86
20	6,5	12X54	0,2	0,86
25	8	12x118	0,15	0,689
25	8	12x67	0,2	0,689
30	9	12x141	0,15	0,574
30	9	12x80	0,2	0,574
50	11,3	12x236	0,15	0,344
50	11,3	12x133	0,2	0,344
75	13	12x354	0,15	0,23
75	13	12x198	0,2	0,23
95	15,5	12x249	0,2	0,181
100	16	12x470	0,15	0,172
100	16	12x264	0,2	0,172
120	17	12x564	0,15	0,143
120	17	12x319	0,2	0,173
150	19,5	12x398	0,2	0,114
200	22,6	12x531	0,2	0,086
250	25,2	12x664	0,2	0,068
300	27,6	12x800	0,2	0,057

KUPFER BLANK				KUPFER VERZINNT		
T. Umg. 25°C	T. Umg. 35°C	T. Umg. 45°C	T. Umg. 25°C	T. Umg. 35°C	T. Umg. 45°C	
28	25	22	30	27	25	
31	28	25	33	30	27	
36	32	28	39	36	33	
42	38	33	48	44	40	
51	46	40	56	52	47	
57	52	46	65	58	53	
57	42	46	65	58	53	
69	62	55	77	71	65	
81	73	64	90	83	76	
81	73	64	90	83	76	
112	101	89	125	115	104	
112	101	89	125	115	104	
126	114	101	146	134	122	
126	114	101	146	134	122	
154	139	123	170	157	143	
154	139	123	170	157	143	
185	167	148	193	178	162	
185	167	148	193	178	162	
250	224	199	276	255	231	
250	224	199	276	255	231	
330	299	265	365	336	306	
330	299	265	365	336	306	
390	351	311	430	397	361	
405	364	322	447	412	375	
405	364	322	447	412	375	
457	412	365	506	467	407	
457	412	365	506	467	407	
535	482	427	590	543	494	
651	588	521	723	667	607	
760	685	606	845	775	706	
860	777	688	955	880	805	

Verarbeitung

1 Kalibrierung

Die Litzen können mit Hilfe eines Schneideisens kalibriert werden, um den in der Tabelle angegebenen Nenndurchmesser zu verringern (siehe vorhergehende Seite).

2 Losgröße und Verpackung

Die Produktionsmenge (MOQ) entspricht der lieferbaren Mindestmenge.

Die Verpackung erfolgt nach der Fertigung, um Nachbesserungen zu vermeiden.

Nennquerschnitt in mm²	Metergewicht kg / ml	Produktionsmenge kg	Produktionsmenge ml	Standard- Aufmachung
2	0,020	12,00	600	DIN 250
2,5	0,025	13,75	550	DIN 250
3	0,030	15,00	500	DIN 250
4	0,040	14,80	370	DIN 250
5	0,050	12,50	250	DIN 250
6	0,060	36,00	600	Bobine AL
8	0,080	40,00	500	Bobine AL
10	0,100	40,00	400	Bobine AL
16	0,160	48,00	300	Touret 600
20	0,200	48,00	240	Touret 600
25	0,250	50,00	200	Touret 600
30	0,300	45,00	150	Touret 600
50	0,500	55,00	110	Touret 600
75	0,750	52,50	70	Touret 600
95	0,950	133,00	140	Touret 750
100	1,000	130,00	130	Touret 750
120	1,200	126,00	105	Touret 750
150	1,500	120,00	80	Touret 600
200	2,000	80,00	40	Touret 600
250	2,500	75,00	30	Touret 600
300	3,000	75,00	25	Touret 600

3 Komprimierung

Die Komprimierung erfolgt durch Elektroschweißung auf zwei oder vier Litzenseiten, um so die Größe des Verbinders bzw. des aufzuschweißenden Kontaktstücks festzulegen.

Die komprimierte Litze ist in Rollen oder in Form von kleinen Elementen lieferbar, die an jedem Ende komprimiert sind.

Die Komprimierung kann an einzelnen Litzen mit einem maximalen Querschnitt von 12 mm² oder an zwei verbundenen Litzen mit einem maximalen Gesamtquerschnitt von 12 mm² durchgeführt werden.

TRESSE MÉTALLIQUE J.FORISSIER INTERNATIONAL WIRE Group

> Rue Ardaillon I B.P. 4 I 42401 I St-CHAMOND cedex 01 I FRANCE Tél. +33 (0)477 310 670 I

Fax. +33 (0)477 310 671